
5. Theory of Angular Distributions

5.1. Helicity Formalism

Typically when examining collisions, a fixed direction is chosen in order

to classify the various polarization states of a particle.  In the helicity formalism,

states are labelled by the component of the total angular momentum along the

direction of the particle motion.  This avoids the relativistic complications

inherent in breaking up the angular momentum operator into a spin- and an

orbital- part.67

Another advantage of the helicity formalism pertains to two-particle

helicity states.  Within the center-of-mass frame, the orbital angular momentum

is always perpendicular to the relative motion of the two particles.  Defining the

helicity of the state as

Ω   =   J P   C   p P 
p P 

, (5.1)

the component of spin along the direction of relative motion will also be the

component of the total angular momentum along this direction,68 since

J P   =   L P   +   S P  and L P   C   p P   =   0 .

The helicity quantum number Ω is also invariant with respect to ordinary
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rotations.  In other words performing a rotation on a state will change the

direction of the momentum (keeping its magnitude constant), but the helicity

quantum number does not change during this operation.  However, as seen by

the equation above, if the momentum vector is rotated by 180 degrees, the

helicity quantum number changes sign.

  Given a set of total angular momentum operators (J
x
, J

y
, J

z
) and three

Euler angles (α, β, γ) it is customary to describe a rotation by

R α ,   β ,   γ   =  e- i α  J
x    e- i β   J 

y    e- i γ  J
z . (5.2)

In the helicity formalism, one wants to rotate the momentum vector away from

the z-axis to the direction (θ,φ) in a unique manner, so (α, β, γ) is (φ, θ, −φ).

In the basis formed by angular momentum eigenvectors, the matrix

element of this rotation matrix is

 J'  M'   R α ,   β ,   γ    J M   =   δ JJ'  D
J 
M M' α ,   β ,   γ . (5.3)

The rotation matrix D for a specific total spin J can thus be found by inserting the

expression for a general Euler rotation between two states of the same J.  This
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rotation matrix is represented as

D J 
M M' 

* α ,   β ,   γ   =  e- i α  M dJ 
M M' β  e- i γ  M'  , (5.4)

where

d J 
M M' β   =    J M'    e- i β  J

y    J M . (5.5)

In other words,  when we perform a rotation upon a particular angular

momentum state, the rotation matrix supplies the coefficients of the new rotated

state in terms of all the 2J+1 angular momentum states making up the basis for

this vector space.69

Using the above tools and a knowledge of the S-matrix, one may

determine the matrix element for a process a +  b 6  c +  d in the center-of-

mass, where a and b lie along the Z-axis, and the relative momentum of c and d

is rotated to the direction (θ,φ) for one given set of helicities.

Suppose that initially we have two particles a and b heading toward

each other along the z-axis, and the collision produces two other particles c and

d.   In our case, a and b might represent the proton and the antiproton.  The

relative momentum vector of c and d is rotated by the angles θ and φ away from

the z-axis in the center-of-mass frame.  Jacob and Wick express this S-matrix
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element as

C =     θ   ϕ   Ω 
c 
  Ω 

d 
 S E     0   0   Ω 

a 
  Ω 

b 
   . (5.6)

One can then insert a complete set of states before and after the S(E):

(5.7)

C = 3 
J , M 

3 
J ' , M ' 

θ ϕ Ω 
c 
Ω 

d 
JMΩ 

c 
Ω 

d 
JMΩ 

c 
Ω 

d 
 S( E )   J ' M ' Ω 

a 
Ω 

b 

J ' M ' Ω 
a 
Ω 

b 
0 0 Ω 

a 
Ω 

b 

 .

This may be simplified by the applying

(5.8)
E J M  Ω 

c 
  Ω 

d 
 S  E'  J'  M'   Ω 

a 
  Ω 

b 
  =   

    δ ( E - E ' )   δ 
JJ' 

  δ 
MM' 

Ω 
c 
Ω 

d 
 SJ E   Ω 

a 
Ω 

b 

and the definition of the rotation matrix

θ   ϕ   Ω 
1 
  Ω 

2 
    J M  Ω 

1 
  Ω 

2 
  =  DJ 

M Ω 
∗ ϕ ,   θ , − ϕ  , (5.9)

where Ω is now the difference of the two helicity quantum numbers, Ω
1
 − Ω

2
.

The end result for the matrix element in the helicity formalism may be expressed

60



as

(5.10)
1 

4  p
3 
J 

  2 J +   1 Ω 
c 
Ω 

d 
 SJ ( E )   Ω 

a 
Ω 

b 
 DJ 

Ω µ 
* ϕ , θ , − ϕ  .

Here Ω is the difference of the final state helicities (c and d), and µ is the

difference of the initial state helicities (a and b).  The total amplitude considers

all possible values of total angular momentum J.    However, we only concern

ourselves with J=1 because of the vector nature of the J/Ψ and Ψ′.

pp

Ωpbar Ωp

Ωe+

Ωe-

J/Ψ

e+

e-

θ, φ

Mz

Figure 5.1 :  Decay of the J/Ψ or Ψ’ in the helicity formalism.

For the decay process  p p    6   J / Ψ   6  e+ 
 e

- 
 shown in Figure 5.1, two

stages must occur:  p p   6  J/ Ψ   and  J / Ψ   6  e+ e − .  To derive the matrix

element,  one first multiplies an amplitude by a rotation matrix for both the
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production and decay stages, and then sums over all possible intermediate

states M
z
 of the vector state J/Ψ, since the J/Ψ is unobserved

70
:

(5.11)

M Ω 
p p 

,   Ω 
e + e - 

,  J = 3 
M 

z 

C 
M 

z 

D J * 

Ω 
p p 

, M 
z 

0 , 0 , 0 B 
Ω 

e + e - 

D J * 

M 
z 
, Ω 

e + e - 

ϕ , θ , − ϕ  .

Here Ω 
p p 

 refers to the difference in helicity between the proton and

antiproton, and Ω 
e + e - 

  refers to the difference in helicity between the electron and

the positron.    The first rotation matrix above is a delta function, meaning Ω 
p p 

 =

Mz .  The first term in brackets describes the production of a charmonium state at

the origin with a polarization given by Mz, and so only one term contributes from

this sum.  Hence we have

(5.12)

M Ω 
p p 

,   Ω 
e + e - 

,  J   % C 
Ω 

p p 

B 
Ω 

e + e − 

D J ∗ 
Ω 

p p 
, Ω 

e + e - 

ϕ , θ , − ϕ .

After this matrix element is squared, it must be averaged over the initial

p p  states and summed over the final e+e- states to get the differential cross

section.  This means summing over all possible helicity combinations of the
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proton and antiproton, and then summing over all possible combinations for the

electron and positron.  There are four such helicity states for the proton and

antiproton  (8 8 ,   8 9 ,   9 8 ,   9 9 ), which means that there are two possible ways to

produce helicity zero.  The electron and positron state cannot have a helicity

zero term if we neglect the masses of the electrons.

Since the helicity of each individual proton or electron is +1/2 or -1/2,

there exist five different helicity amplitudes in our exclusive decays: C-1, C0, C1,

B1, and B-1.  Although the C’s and B’s are independent of each other, the

following parity relations apply:

B 
Ω 

e + e - 

  =   η 
ψ 
η 

e + e - 
− 1 

S 
ψ 
- S 

e + 
+  S

e -  B
- Ω 

e + e - 

= - 1 - 1 - 1 
1 - 1 

2 
  +   1 

2  B
- Ω 

e + e - 

 ; (5.13)

C 
Ω 

p p 

  =   η 
p p 

η 
ψ 

- 1 S 
p ¯ 
  +  S

p 
- S 

ψ   C 
- Ω 

p p 

= - 1 - 1 - 1 
1 
2 

  +   1 
2 

  -   1 

   C
- Ω 

p p 

 . (5.14)

As a result, B1 = B-1 and C1 = C-1.   We now square the matrix element

above and sum over all possible helicity combinations for the proton and
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antiproton, and then sum over all possible combinations for the electron and

positron:

 M 2   %   3 
Ω 

p p 
,   Ω 

e + e - 

 B2 

Ω 
e + e - 

 C2 

Ω 
p p 

d 1 

Ω 
p p 

,   Ω 
e + e - 

θ 2 
. (5.15)

In the process of squaring the rotation matrix, the exponential factors

have canceled with their complex conjugates, so the angular distribution does

not depend upon the azimuthal angle of the electrons in the center of mass

frame.  The sum is now performed over Ω 
p p 

 = -1, 0, 0, 1 and Ω 
e + e − 

 = -1, 1.  Since

we are only interested in the shape of the angular distribution, and B
1
2 is

common to every term in this sum due to parity, we may safely factor it out.

Using the following d  functions for J=1,

d 1 
11 θ   =  d1 

- 1 - 1 θ   = cos2 θ 
2 

  ; (5.16)

d 1 
1 - 1 θ   =  d1 

- 11 θ   =  sin2 θ 
2 

 ; (5.17)

and d 1 
01 θ   =  d1 

0 - 1 θ   =   2 sin θ 
2 

cos θ 
2 

 ; (5.18)

one arrives at the final form of the angular distribution of the electrons in the

center-of- mass for this exclusive process:
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M 2   %   1   +   λ  cos2 θ   , (5.19)

where λ   =   
C 

1 

2   -   2  C
0 

2 

C 
1 

2   +   2  C
0 

2 
 . (5.20)

Since we have taken the electrons to be massless, the angular

distribution parameter for our exclusive processes is solely dependent upon the

manner in which the J=1 charmonium state was produced.  If we had produced

charmonium by colliding electron beams instead of annihilating protons and

antiprotons, the sum over the initial e+e- helicity states would have excluded any

production of helicity zero charmonium, and α would become unity.  This has

already  been confirmed by previous e+e- experiments for both the J/Ψ and

Ψ’.71,72  This parameter is less than one for the case of antiproton-proton

annihilation in general because the mass of the proton is much greater than the

mass of the electron.

 5.2. The Angular Distribution Parameter

In exclusive decays, one cannot distinguish whether the electrons came

from a charmonium decay, or directly from the continuum channel p p 6  e+ e − .
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Thus the angular distribution parameter λ has a strong contribution resulting

from the 3-gluon exchange in the production of charmonium (i.e. the lowest

order Feynman graph shown in Figure 5.2), and an electromagnetic

contribution resulting from the annihilation of the proton and antiproton into a

virtual photon, which may or may not include an intermediate vector

charmonium state.   Furthermore, another electromagnetic contribution stems

from the replacement of  one of those 3 gluons by a photon.

c

c

u

u

u

u

d

d

Figure 5.2 :  Lowest order Feynman graph for the strong contribution to the
angular distribution parameter.

However,  measurements of the time-like electromagnetic form factors

away from the charmonium region reveal that the cross-section for the

continuum channel is negligible at the J/Ψ and Ψ’, on the order of a picobarn.73  
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Futhermore, calculations show that the electromagnetic contributions to the

angular distribution parameter are on the order of 5%.

One may also question whether these exclusive decays also receive a

contribution from the  c c  g Fock state (charm quark + anti-charm quark + glue)

in addition to the diagram in Figure 5.2.  In general, the Fock state

representation includes all quantum fluctuations of the hadron wavefunction.74

In the case of P-wave states, the valence c c  state is suppressed in exclusive

decays and the c c  g  Fock state contributes.  Fortunately in S-wave exclusive

decays like ours the situation is reversed.  Higher-order Fock states like c c  g

are suppressed by factors of the charmed quark mass and velocity.75

Usually when one discusses the angular distribution of the continuum

channel, one talks about extracting a pair of electromagnetic form factors of the

proton.  Due to the vector-like nature of the intermediate photon, Lorentz

invariance allows the proton-antiproton-photon vertex to be written in the

following manner:

(5.21)

 Γ µ   =  ev ¯ ( p ' ) γ µ F 1 Q 2   - p +  p' µ 

2 M 
F 2 Q 2 u ( p )  ,

where F1 and F2 refer to the helicity-conserving and helicity-flip parts of this
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vertex and are referred to as Dirac form factors.  From this one can derive the

form of the angular distribution for this process76

(5.22)

d σ 
d ( cosθ * ) 

  =   π α 2 

8 EP
G M 

2 1 + cos2 θ *   +   
4 m p 

2 

s 
G E 

2 

sin2 θ *  ,

where E and P are the center-of-mass energy and momentum of the antiproton,

θ* is the polar decay angle of the antiproton in the center-of-mass frame, and

the Sachs electromagnetic form factors are defined as

G M   =  F1   +  F2  , (5.23)

and G E   =  F1   +   q 2 

4 m p 
2 F 2 . (5.24)

As a result, the angular distribution parameter may be written as

λ   =   

E 
CM

2   - 4 
G 

E 

G 
M 

2 

m 
p 

2 

E 
CM

2   + 4 
G 

E 

G 
M 

2 

m 
p 

2 

. (5.25)

In the case of charmonium , one can also extract form factors like these

from the angular distribution of charmonium decays since both the virtual

photon and the spin 1 charmonium state are vector states.  However, one

cannot call these form factors electromagnetic .  These “strong” form factors can
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also be evaluated by applying Lorentz invariance at the vertex.

The distinction can be clarified by the derivation of the form factor F1 by

Brodsky and Lepage.77  They break up the electromagnetic form factor into 3

parts: a) an amplitude φ  for finding the three-quark valence state in the

incoming proton, b) an amplitude TH for this state to scatter with the photon

producing 3 quarks with roughly collinear momenta, and c) an amplitude φ* for

this final quark state to form into a hadron:

(5.26)

F 1 Q 2 = 
1 

I 
0 

dx
1 

I 
0 

dy φ * y i , Q ˜ 
y  TH x i ,  yi , Q   φ x i , Q ˜ 

x  ,

where

dx   =  dx1  dx2  dx3 δ 1 - x 1 - x 2 - x 3 (5.27)

and Q ˜ 
x   =  min( x i Q )  , (5.28)

and x represents the fraction of the longitudinal momentum taken up by each

valence quark.

The formation of charmonium from proton-antiproton annihilation really

involves two distinctly different processes78:   An interaction between the
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various quarks and gluons that is primarily perturbative in nature, and a

recombination of the quarks into a proton (or breaking up thereof) that is

basically  non-perturbative.

TH  , the “hard scattering amplitude”, includes diagrams like those in

Figure 5.1 with the exchange of gluons.  In the electromagnetic case such

diagrams refer only to the exchange of the virtual photon.  So for any process,

TH addresses the hard scattering among the gluons and three quarks of the

hadron, which can be treated perturbatively.

The “quark distribution amplitude” φ , a function of Q2, involves soft

processes that recombine the produced quarks into hadrons.  At charmonium

energies, such soft processes are not treatable by perturbative methods in

QCD.  The distribution amplitude can be thought of as a probability of finding a

valence quark in the proton carrying a fraction Xi of the proton’s momentum and

carrying a transverse momentum less than some scale Q.  As a result, these

valence quarks may be treated as moving collinearly up to this scale Q.79

Furthermore, these amplitudes are independent of the exclusive decay and are

related to the total hadronic wave function.

    The soft processes responsible for the recombination phase are

typically studied via QCD sum rules or lattice calculations.  QCD sum rules
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allow one to calculate different moments of the distribution amplitudes.  For

instance the (n1, n2, n3)-th moment of the proton’s distribution amplitude is

(5.29)

I 
x 1 , x 2 , x 3 

φ x 1 , x 2 , x 3 , Q 2 x 1 
n 1  x2 

n 2  x3 
n 3  dx 1 d x 2 d x 3 .

Perturbative QCD yields a general expression for the distribution amplitude at a

very high energy that is an infinite sum of terms with an unknown non-

perturbative parameter which is related to these (n1, n2, n3)-th moments.  The

different theoretical models for the distribution amplitudes all evaluate as many

moments as possible at a given energy, truncate the general perturbative

expression, and find the unknown coefficients using QCD sum rules.80

However, it is not completely determined at this time whether one can apply the

general QCD expression or apply such a truncation to N terms at lower

energies.

5.3  Comparison of Theoretical Predictions

Brodsky and Lepage81 predicted that if one neglects the mass of the

constituent quarks, then the total hadronic helicity of all the constituent valence

quarks is conserved.  Furthermore, the angular distribution of Ψ decays into p p 
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must have the same form, 1 + cos2(θ), that the direct decay of e+e- into p p  via a

photon has because the J/Ψ is a vector particle like the virtual photon.

One can still favor a spin-one gluon and have a λ that is less than one if

one considers various mass effects on the decay.  Claudson, Glashow, and

Wise took into account the effect of the total baryon mass as a whole and

neglected the contribution of the form factor F
2
,82

(5.30)

d Γ ( J / Ψ 6 B B ¯ ) 
d ( cosθ ) 

  %   1 +   
M 2 

Ψ 
  -   4 m 

B 

2 

M 2 

Ψ 
  +   4 m 

B 

2 
cos2 θ ,

which predicts λ = 0.463 for the J/Ψ and λ =  0.589 for the Ψ’.  Effectively, this

derivation neglects the flipping of the constituent quarks’ spins in the proton.

Carimalo considered mass effects on the quark level by (a) assigning

each constituent quark to have an effective mass of 1/3 the mass of the proton

and (b) assuming a nonrelativistic static quark model , in which all quarks share

the momentum equally.83  He derives the angular distribution coefficient as
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λ   =   1   +  u 2   -  u 1   +   6 u 2 

1   +  u 2   +  u 1   +   6 u 2 
 , (5.31)

where u = 
m p 

2 

M ψ 
2   . (5.32)

Disregarding the small electromagnetic correction, this results in λ = .688  for

the J/Ψ and λ =.802 for the Ψ’.

 At very high energies, the angular distribution parameter should be one,

regardless of what kind of exclusive decay occurs, since the energy of the

resonance will be much larger than the mass of the proton.  At these energies,

perturbative QCD reigns.  At lower energies, distances between the valence

quarks of the proton may become larger.  Hence the confinement QCD

potential, which is not well modelled perturbatively, comes into play.

Furthermore, the masses of the quarks and hadrons, and perhaps an effective

mass for the gluon, have an impact as well.  Since the mass of the Ψ is lower

than the mass of the Ψ’, the angular distribution parameter λ at the Ψ should be

lower than λ at the Ψ’ for our exclusive decays into e+e-.
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The world experimental average84 of the angular distribution parameter

for the Ψ prior to 1989 was 0.63 " .08.  The derivation of Claudson, Glashow,

and Wise was able to demonstrate that corrections due to mass effects can be

substantial, but it also shows that one cannot neglect the impact of the

individual quarks.  So of the first three predictions presented so far, a non-

relativistic treatment, whereby each of the valence quarks of the proton share

the momentum equally,  appears to predict the angular distribution parameter at

the J/ Ψ very well.

More involved calculations of the angular distribution parameter call

upon different models for the quark distribution amplitudes, different

applications of QCD sum rules discussed in Section 5.2, and various forms of

the coupling constant α
s
 used in the calculation.   The predictions shown in

Tables 5.1 and 5.2 reveal that the width from charmonium to p p  is also

significant.  The non-relativistic treatment of Carimalo83 does not hold up as well

under this additional constraint, and it appears that the “heterotic” solution of

Stefanis and Bergmann85 matches both (a) the world average for the angular

distribution parameter and (b) the Particle Data Group value for the width

Γ ( J / Ψ   6 p p )  of 188 eV.

Also presented in Table 5.2 are the respective theoretical expectations86
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for the angular distribution parameter at the Ψ’ and the respective decay widths

to p p .  The same models which predict this parameter and the p p  decay

width87 at the Ψ are used to predict it at the Ψ’.  According to the Particle Data

Group the value of the decay width to p p  is 53 eV at  the Ψ’.
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DA Model λ  Γ ( J / Ψ   6   p p ) 
(eV)

Brodsky and Lepage81 1 -

Claudson, Glashow, and
Wise82

0.46 -

Carimalo(Non-
relativistic)83

0.688 0.2

Asymptotic78 0.667 2.6

Chernyak and
Zhitnitsky88

0.561 58.7

Chernyak, Oglobin, and
Zhitnitsky89

0.565 82.6

King and Sachrajda90 0.591 125.5

Gari and Stefanis91 0.963 16.8

Stefanis and Bergmann
(heterotic)85

0.689 167.1

Table 5.1 :  Theoretical Predictions of the angular distribution parameter and partial width
to p p  at the J/Ψ.
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DA Model λ Γ ( Ψ   '   6   p p ) 
(eV)

Brodsky and Lepage81 1 -

Claudson, Glashow, and
Wise82

0.59 -

Carimalo(Non-
relativistic)83

0.802 0.02

Asymptotic78 0.782 0.21

Chernyak and
Zhitnitsky88

0.683 5.47

Chernyak, Oglobin, and
Zhitnitsky89

0.687 6.66

King and Sachrajda90 0.712 10.31

Gari and Stefanis91 0.986 1.07

Stefanis and
Bergmann85

(heterotic)

0.790 14.00

Table 5.2 :  Theoretical Predictions of the angular distribution parameter and
 p p  at the Ψ’ .
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